Illumina Adapter Sequences

This document provides the nucleotide sequences that comprise Illumina oligonucleotides used in Illumina sequencing technologies. These sequences are provided for the sole purpose of understanding and publishing the results of your sequencing experiments.

Proprietary to Illumina

The oligonucleotides are proprietary to Illumina. Their manufacture, use, and sequence information are protected by intellectual property, including issued or pending patents, copyright, and trade secrets. Illumina reserves all rights in the oligonucleotides and their sequence information, except for the strictly limited permissions as follows.

Most Illumina oligonucleotides are specially modified and purified in a proprietary manner to enable and optimize their performance with Illumina instruments. Illumina is the only authorized supplier of the oligos. Illumina has no control over the quality, composition, or compatibility of reagents from unauthorized suppliers. We cannot troubleshoot or provide other support for experiments performed with unauthorized reagents, and we cannot guarantee the performance of Illumina products when used with such reagents.

Limited Permissions

Your permission to copy or distribute sequence information is limited to within your institution for use only with Illumina instruments and associated equipment, consumables, and software. You may not copy or distribute this information outside your institution, except under the following circumstances.

- You may distribute outside your institution and publish the sequence information in presentations, manuscripts, or publications authored by you, if the following copyright notice is included:

 Oligonucleotide sequences © 2018 Illumina, Inc. All rights reserved.

- If you modify or adapt any sequence information contained in this letter and distribute or publish the modified sequences, you must include the following copyright notice:

 Oligonucleotide sequences © 2018 Illumina, Inc. All rights reserved. Derivative works created by Illumina customers are authorized for use with Illumina instruments and products only. All other uses are strictly prohibited.

For all other uses of the sequence information or for questions on custom oligonucleotides, please contact Illumina to discuss the permissions or licenses that might be required.
Contents

Introduction ... 5
AmpliSeq for Illumina Panels ... 5
 Index 1 (i7) Adapters ... 5
 Index 2 (i5) Adapter .. 6
TruSight Amplicon Panels .. 6
 Index 1 (i7) Adapters ... 6
 Index 2 (i5) Adapter ... 7
TruSight Cardio .. 7
 Index 1 (i7) Adapters ... 7
 Index 2 (i5) Adapter ... 8
TruSight One .. 8
 Index 1 (i7) Adapters ... 8
 Index 2 (i5) Adapter ... 9
TruSight Rapid Capture ... 9
 Index 1 (i7) Adapters ... 9
 Index 2 (i5) Adapter ... 10
TruSight Tumor 15 .. 10
 Index 1 (i7) Adapters ... 10
 Index 2 (i5) Adapter ... 11
TruSight Tumor 170 ... 11
 Index 1 (i7) Adapters (RNA) ... 11
 Index 2 (i5) Adapter (RNA) ... 12
 Index 1 (i7) Adapters (DNA) ... 12
 Index 2 (i5) Adapter (DNA) ... 13
TruSight RNA Pan-Cancer Panel ... 14
 Universal Adapter .. 14
 Index Adapters ... 14
Illumina Nextera Adapters .. 16
 Nextera Transposase Adapters ... 16
 Nextera Index Kit – PCR Primers ... 16
 Nextera Index Kit - Index 1 (i7) Adapters .. 16
 Nextera Index Kit - Index 2 (i5) Adapters ... 17
 Nextera XT Index Kit v2 - Index 1 (i7) Adapters ... 17
 Nextera XT Index Kit v2 - Index 2 (i5) Adapters ... 18
 Nextera DNA CD Indexes - Index 1 (i7) Adapters .. 19
 Nextera DNA CD Indexes - Index 2 (i5) Adapters .. 20
IDT for Illumina UD Indexes ...20
TruSeq CD Indexes ...23
 D501–D508 Adapters ..23
 D701–D712 Adapters ..23
 Index 1 (i7) Adapters ...24
 Index 2 (i5) Adapters ...24
TruSeq Single Indexes ..25
 TruSeq Universal Adapter ..25
 TruSeq Index Adapters (Index 1–27) ...25
TruSeq Amplicon Kits ...26
 Index 1 (i7) Adapters ...26
 Index 2 (i5) Adapter ..27
TruSeq DNA Methylation ..27
 Index PCR Primers ..27
 Index Adapters ..27
TruSeq Ribo Profile ..28
 3’ Adapter ...28
 Forward PCR Primer ...28
 Index PCR Primers ..28
 Index Adapters ..28
TruSeq Synthetic Long-Read DNA ...29
 Long Reads Adapter ...29
TruSeq Small RNA ...29
 RNA 5’ Adapter (RA5) ...29
 RNA 3’ Adapter (RA3) ...29
 Stop Oligo (STP) ...29
 RNA RT Primer (RTP) ...29
 RNA PCR Index Primers (RPI1–RPI48) ...29
TruSeq Targeted RNA Expression ...32
 Index 1 (i7) Adapters ...32
 Index 2 (i5) Adapter ..33
Process Controls for TruSeq Kits ...35
Nextera DNA Sample Prep Kit (Epicentre Biotechnologies)40
 Transposon Sequences ...40
 Adapters (showing optional bar code) ..40
 PCR Primers ..40
Oligonucleotide Sequences for Genomic DNA40
 Adapters ..41
PCR Primers .. 41
Genomic DNA Sequencing Primer ... 41

Oligonucleotide Sequences for Paired End DNA ... 41
 PE Adapters .. 41
 PE PCR Primer 1.0 .. 41
 PE PCR Primer 2.0 .. 41
 PE Read 1 Sequencing Primer ... 41
 PE Read 2 Sequencing Primer ... 41

Oligonucleotide Sequences for the Multiplexing Sample Prep Oligo Only Kit 41
 Multiplexing Adapters .. 41
 Multiplexing PCR Primer 1.0 .. 42
 Multiplexing PCR Primer 2.0 .. 42
 Multiplexing Read 1 Sequencing Primer .. 42
 Multiplexing Index Read Sequencing Primer ... 42
 Multiplexing Read 2 Sequencing Primer .. 42
 PCR Primer Index Sequences 1–12 ... 42

Oligonucleotide Sequences for the v1 and v1.5 Small RNA Kits 43
 RT Primer .. 43
 5' RNA Adapter ... 43
 3' RNA Adapter ... 43
 v1.5 Small RNA 3' Adapter .. 43
 Small RNA PCR Primer 1 ... 43
 Small RNA PCR Primer 2 ... 43
 Small RNA Sequencing Primer ... 43

Revision History ... 44
Introduction

This document lists the index adapter sequences for Illumina library prep kits. The sequences are grouped into sections for AmpliSeq for Illumina, TruSight kits, Nextera kits, and TruSeq kits, with an appendix that lists TruSeq controls and information for legacy Illumina kits.

Sequencing on the MiniSeq, NextSeq, and HiSeq 3000/4000 systems follow a different dual-indexing workflow than other Illumina systems, which requires the reverse complement of the i5 index adapter sequence.

- If you are creating a sample sheet manually for the MiniSeq, NextSeq, or HiSeq 3000/4000 systems, include the reverse complement of the sequence on your sample sheet.
- If you are using the Illumina Experiment Manager (IEM), BaseSpace Prep tab, or Local Run Manager to record the adapter sequences, the software creates the reverse complement automatically.

AmpliSeq for Illumina Panels

AmpliSeq Comprehensive Cancer Panel for Illumina, AmpliSeq Cancer HotSpot Panel v2 for Illumina, AmpliSeq Focus Panel for Illumina, AmpliSeq Comprehensive Panel v3 for Illumina, AmpliSeq BRCA Panel for Illumina, AmpliSeq Immune Response Panel for Illumina, AmpliSeq Transcriptome Human Gene Expression Panel for Illumina, AmpliSeq Exome Panel for Illumina, AmpliSeq Custom DNA Panel for Illumina. These combinatorial dual index adapters have been arranged in the plate to enforce the recommended pairing strategy.

Index 1 (i7) Adapters

\[\text{CAAGCAGAAGACGGCATACGAGAT} \text{i7} \text{GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG} \]

Index 2 (i5) Adapters

\[\text{AATGATACGGCGACCACCGAGATCTACAC} \text{i5} \text{TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG} \]

AdapterTrimming

The following sequence is needed for adapter trimming.

\[\text{CTGTCTCTTATACACATCT} \]

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q7005</td>
<td>GTGAATAT</td>
</tr>
<tr>
<td>Q7006</td>
<td>ACAGGCGC</td>
</tr>
<tr>
<td>Q7007</td>
<td>CATAGAGT</td>
</tr>
<tr>
<td>Q7008</td>
<td>TGCGAGAC</td>
</tr>
<tr>
<td>Q7015</td>
<td>TCTCTACT</td>
</tr>
<tr>
<td>Q7016</td>
<td>CTCTCGTC</td>
</tr>
<tr>
<td>Q7017</td>
<td>CCAAGTCT</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet MiSeq</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5001</td>
<td>AGCGCTAG</td>
<td>CTAGCGCT</td>
</tr>
<tr>
<td>Q5002</td>
<td>GATATCGA</td>
<td>TCGATATC</td>
</tr>
<tr>
<td>Q5007</td>
<td>ACATAGCG</td>
<td>CGCTATGT</td>
</tr>
<tr>
<td>Q5008</td>
<td>GTGCGATA</td>
<td>TATCGCAC</td>
</tr>
<tr>
<td>Q5009</td>
<td>CCAACAGA</td>
<td>TCTGTTGG</td>
</tr>
<tr>
<td>Q5010</td>
<td>TTGGTGAG</td>
<td>CTCACCAA</td>
</tr>
<tr>
<td>Q5013</td>
<td>AACCACGG</td>
<td>CCGCGGTT</td>
</tr>
<tr>
<td>Q5014</td>
<td>GGTTATAA</td>
<td>TTATAACC</td>
</tr>
</tbody>
</table>

TruSight Amplicon Panels

Includes TruSight Myeloid Sequencing Panel and TruSight Tumor 26.

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A701</td>
<td>ATCACGAC</td>
</tr>
<tr>
<td>A702</td>
<td>ACAGTGGT</td>
</tr>
<tr>
<td>A703</td>
<td>CAGATCCA</td>
</tr>
<tr>
<td>A704</td>
<td>ACAACCGG</td>
</tr>
<tr>
<td>A705</td>
<td>ACCCAGCA</td>
</tr>
<tr>
<td>A706</td>
<td>AACCCTTC</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

### i7 Index Name	i7 Bases for Sample Sheet
A707 | CCCAACCT
A708 | CACCACAC
A709 | GAAACCCA
A710 | TGTGACCA
A711 | AGGGTCAA
A712 | AGGAGTGG

Index 2 (i5) Adapter

i5 Index Name	i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500	i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000
A501 | TGAACCTT | AAGGTTCA |
A502 | TGCTAAGT | ACTTAGCA |
A503 | TGTTCTCT | AGAGAACA |
A504 | TAAGACAC | GTGTCTTA |
A505 | CTAATCGA | TCGATTAG |
A506 | CTAGAACA | TGTTCTAG |
A507 | TAAGTTC | GGAACCTA |
A508 | TAGACCTA | TAGGCTTA |

TruSight Cardio

Index 1 (i7) Adapters

i7 Index Name	i7 Bases for Sample Sheet
N701 | TAAGGCGA |
N702 | CGTACTAG |
N703 | AGGCAGAA |
N704 | TCCTGAGC |
N705 | GGACTCCT |
N706 | TAGGCATG |
Illumina Adapter Sequences

i7 Index Name

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>N708</td>
<td>CAGAGAGG</td>
</tr>
<tr>
<td>N709</td>
<td>GCTACGCT</td>
</tr>
<tr>
<td>N710</td>
<td>CGAGGCTG</td>
</tr>
<tr>
<td>N711</td>
<td>AAGAGGCA</td>
</tr>
<tr>
<td>N712</td>
<td>GTAGAGGA</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>E502</td>
<td>CTCTCTAT</td>
<td>ATAGAGAG</td>
</tr>
<tr>
<td>E503</td>
<td>TATCCTCT</td>
<td>AGAGGATA</td>
</tr>
<tr>
<td>E504</td>
<td>AGAGTAGA</td>
<td>TCTACTCT</td>
</tr>
<tr>
<td>E505</td>
<td>GTAAGGAG</td>
<td>CTCTTAC</td>
</tr>
</tbody>
</table>

TruSight One

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N701</td>
<td>TAAGGCGA</td>
</tr>
<tr>
<td>N702</td>
<td>CGTACTAG</td>
</tr>
<tr>
<td>N703</td>
<td>AGGCAGAA</td>
</tr>
<tr>
<td>N704</td>
<td>TCCTGAGC</td>
</tr>
<tr>
<td>N705</td>
<td>GGACTCCT</td>
</tr>
<tr>
<td>N706</td>
<td>TAGGCATG</td>
</tr>
<tr>
<td>N707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>N708</td>
<td>CAGAGAGG</td>
</tr>
<tr>
<td>N709</td>
<td>GCTACGCT</td>
</tr>
<tr>
<td>N710</td>
<td>CGAGGCTG</td>
</tr>
</tbody>
</table>
i7 Index Name i7 Bases for Sample Sheet

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N711</td>
<td>AAGAGGCA</td>
</tr>
<tr>
<td>N712</td>
<td>GTAGAGGA</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>E502</td>
<td>CTCTCTAT</td>
<td>ATAGAGAG</td>
</tr>
<tr>
<td>E503</td>
<td>TATCCTCT</td>
<td>AGAGGATA</td>
</tr>
<tr>
<td>E504</td>
<td>AGAGTAGA</td>
<td>TCTACTCT</td>
</tr>
<tr>
<td>E505</td>
<td>GTAAGGAG</td>
<td>CTCCTTAC</td>
</tr>
</tbody>
</table>

TruSight Rapid Capture

Includes TruSight Cancer and TruSight Inherited Disease.

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N701</td>
<td>TAAGGCGA</td>
</tr>
<tr>
<td>N702</td>
<td>CGTCTCTAG</td>
</tr>
<tr>
<td>N703</td>
<td>AGGCAGAAA</td>
</tr>
<tr>
<td>N704</td>
<td>TCCTGAGGC</td>
</tr>
<tr>
<td>N705</td>
<td>GGACTCCT</td>
</tr>
<tr>
<td>N706</td>
<td>TAGGCAATG</td>
</tr>
<tr>
<td>N707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>N708</td>
<td>CAGAGAGG</td>
</tr>
<tr>
<td>N709</td>
<td>GCTACGCT</td>
</tr>
<tr>
<td>N710</td>
<td>CGAGGCTG</td>
</tr>
<tr>
<td>N711</td>
<td>AAGAGGCCA</td>
</tr>
<tr>
<td>N712</td>
<td>GTAGAGGA</td>
</tr>
</tbody>
</table>
Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>E501</td>
<td>TAGATCGC</td>
<td>GCGATCTTA</td>
</tr>
<tr>
<td>E502</td>
<td>CTCTCTAT</td>
<td>ATAGAGAG</td>
</tr>
<tr>
<td>E503</td>
<td>TATCCTCT</td>
<td>AGAGGATA</td>
</tr>
<tr>
<td>E504</td>
<td>AGAGTCTA</td>
<td>TCTACTCT</td>
</tr>
<tr>
<td>E505</td>
<td>GTAAGGAG</td>
<td>CTCCTTAC</td>
</tr>
<tr>
<td>E506</td>
<td>ACTGCTATA</td>
<td>TATGCAGT</td>
</tr>
<tr>
<td>E507</td>
<td>AAGGAGTA</td>
<td>TACTCCTTT</td>
</tr>
<tr>
<td>E508</td>
<td>CTAAGCCT</td>
<td>AGGCTTAG</td>
</tr>
</tbody>
</table>

TruSight Tumor 15

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>R701</td>
<td>ATCACG</td>
</tr>
<tr>
<td>R702</td>
<td>CGATGT</td>
</tr>
<tr>
<td>R703</td>
<td>TTAGGGC</td>
</tr>
<tr>
<td>R704</td>
<td>TGACCA</td>
</tr>
<tr>
<td>R705</td>
<td>ACAGTG</td>
</tr>
<tr>
<td>R706</td>
<td>GCCAAT</td>
</tr>
<tr>
<td>R707</td>
<td>CAGATC</td>
</tr>
<tr>
<td>R708</td>
<td>ACTTGA</td>
</tr>
<tr>
<td>R709</td>
<td>GATCAG</td>
</tr>
<tr>
<td>R711</td>
<td>GGCTAC</td>
</tr>
<tr>
<td>R712</td>
<td>CTTGTA</td>
</tr>
</tbody>
</table>
Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A501</td>
<td>TGAACCTT</td>
<td>AAGGTTCa</td>
</tr>
<tr>
<td>A502</td>
<td>TGCTAAGT</td>
<td>ACTTAGCA</td>
</tr>
</tbody>
</table>

TruSight Tumor 170

Index 1 (i7) Adapters (RNA)

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>Index Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D702</td>
<td>TCCGGAGA</td>
<td>UP01</td>
</tr>
<tr>
<td>D707</td>
<td>CTGAAGCT</td>
<td>UP02</td>
</tr>
<tr>
<td>D717</td>
<td>CGTAGCTC</td>
<td>UP03</td>
</tr>
<tr>
<td>D706</td>
<td>GAATTCGT</td>
<td>UP04</td>
</tr>
<tr>
<td>D712</td>
<td>AGCGATAG</td>
<td>UP05</td>
</tr>
<tr>
<td>D724</td>
<td>GCGATTAA</td>
<td>UP06</td>
</tr>
<tr>
<td>D705</td>
<td>ATTCAGAA</td>
<td>UP07</td>
</tr>
<tr>
<td>D715</td>
<td>TTAATCAG</td>
<td>UP09</td>
</tr>
<tr>
<td>D713</td>
<td>GAATAATC</td>
<td>UP08</td>
</tr>
<tr>
<td>D703</td>
<td>CGCTCATT</td>
<td>UP10</td>
</tr>
<tr>
<td>D710</td>
<td>TCCGGCGAA</td>
<td>UP11</td>
</tr>
<tr>
<td>D701</td>
<td>ATTACTCG</td>
<td>UP12</td>
</tr>
<tr>
<td>D716</td>
<td>ACTGCTTA</td>
<td>UP13</td>
</tr>
<tr>
<td>D714</td>
<td>ATGCGGCT</td>
<td>UP14</td>
</tr>
<tr>
<td>D718</td>
<td>GCCTCTCT</td>
<td>UP15</td>
</tr>
<tr>
<td>D719</td>
<td>GCCGTAGGG</td>
<td>UP16</td>
</tr>
</tbody>
</table>
Index 2 (i5) Adapter (RNA)

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet</th>
<th>Index Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D503</td>
<td>AGGATAGG</td>
<td>UP01</td>
</tr>
<tr>
<td>D504</td>
<td>TCAGAGCC</td>
<td>UP02</td>
</tr>
<tr>
<td>D509</td>
<td>CATCCGAA</td>
<td>UP03</td>
</tr>
<tr>
<td>D510</td>
<td>TTATGAGT</td>
<td>UP04</td>
</tr>
<tr>
<td>D513</td>
<td>ACGAATAA</td>
<td>UP05</td>
</tr>
<tr>
<td>D515</td>
<td>GATCTGCT</td>
<td>UP06</td>
</tr>
<tr>
<td>D501</td>
<td>AGGCTATA</td>
<td>UP07</td>
</tr>
<tr>
<td>D502</td>
<td>GCCTCTAT</td>
<td>UP08</td>
</tr>
<tr>
<td>D505</td>
<td>CTTCGCCT</td>
<td>UP09</td>
</tr>
<tr>
<td>D506</td>
<td>TAAGATTA</td>
<td>UP10</td>
</tr>
<tr>
<td>D517</td>
<td>AGTAAGTA</td>
<td>UP11</td>
</tr>
<tr>
<td>D518</td>
<td>GACTTCCCT</td>
<td>UP12</td>
</tr>
<tr>
<td>D511</td>
<td>AGAGGCGC</td>
<td>UP13</td>
</tr>
<tr>
<td>D512</td>
<td>TAGCCGCG</td>
<td>UP14</td>
</tr>
<tr>
<td>D514</td>
<td>TTCGTAGG</td>
<td>UP15</td>
</tr>
<tr>
<td>D516</td>
<td>CGCTCCGC</td>
<td>UP16</td>
</tr>
</tbody>
</table>

Index 1 (i7) Adapters (DNA)

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>Index Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D721</td>
<td>CATCGAGG</td>
<td>CP01</td>
</tr>
<tr>
<td>D723</td>
<td>CTCGACTG</td>
<td>CP02</td>
</tr>
<tr>
<td>D709</td>
<td>CGGCTATG</td>
<td>CP03</td>
</tr>
<tr>
<td>D711</td>
<td>TCTCGCAGC</td>
<td>CP04</td>
</tr>
<tr>
<td>D723</td>
<td>CTCGACTG</td>
<td>CP05</td>
</tr>
<tr>
<td>D709</td>
<td>CGGCTATG</td>
<td>CP06</td>
</tr>
<tr>
<td>D711</td>
<td>TCTCGCAGC</td>
<td>CP07</td>
</tr>
</tbody>
</table>
i7 Index Name

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>Index Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D721</td>
<td>CATCGAGG</td>
<td>CP08</td>
</tr>
<tr>
<td>D709</td>
<td>CGGCTATG</td>
<td>CP09</td>
</tr>
<tr>
<td>D711</td>
<td>TCTCGCGC</td>
<td>CP10</td>
</tr>
<tr>
<td>D721</td>
<td>CATCGAGG</td>
<td>CP11</td>
</tr>
<tr>
<td>D723</td>
<td>CTCGACTG</td>
<td>CP12</td>
</tr>
<tr>
<td>D711</td>
<td>TCTCGCGC</td>
<td>CP13</td>
</tr>
<tr>
<td>D721</td>
<td>CATCGAGG</td>
<td>CP14</td>
</tr>
<tr>
<td>D723</td>
<td>CTCGACTG</td>
<td>CP15</td>
</tr>
<tr>
<td>D709</td>
<td>CGGCTATG</td>
<td>CP16</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapter (DNA)

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet</th>
<th>Index Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D507</td>
<td>ACGTCCTG</td>
<td>CP01</td>
</tr>
<tr>
<td>D508</td>
<td>GTCAGTAC</td>
<td>CP02</td>
</tr>
<tr>
<td>D519</td>
<td>CCGTCGCC</td>
<td>CP03</td>
</tr>
<tr>
<td>D520</td>
<td>GTCCGAGG</td>
<td>CP04</td>
</tr>
<tr>
<td>D507</td>
<td>ACGTCCTG</td>
<td>CP05</td>
</tr>
<tr>
<td>D507</td>
<td>ACGTCCTG</td>
<td>CP06</td>
</tr>
<tr>
<td>D508</td>
<td>GTCAGTAC</td>
<td>CP07</td>
</tr>
<tr>
<td>D508</td>
<td>GTCAGTAC</td>
<td>CP08</td>
</tr>
<tr>
<td>D508</td>
<td>GTCAGTAC</td>
<td>CP09</td>
</tr>
<tr>
<td>D519</td>
<td>CCGTCGCC</td>
<td>CP10</td>
</tr>
<tr>
<td>D519</td>
<td>CCGTCGCC</td>
<td>CP11</td>
</tr>
<tr>
<td>D519</td>
<td>CCGTCGCC</td>
<td>CP12</td>
</tr>
<tr>
<td>D519</td>
<td>CCGTCGCC</td>
<td>CP13</td>
</tr>
<tr>
<td>D520</td>
<td>GTCCGAGG</td>
<td>CP14</td>
</tr>
<tr>
<td>D520</td>
<td>GTCCGAGG</td>
<td>CP15</td>
</tr>
</tbody>
</table>
TruSight RNA Pan-Cancer Panel

Universal Adapter
5’ AATGATACGGCGACCACCGAGATCTACACACTCTTTCCCTACACGACGCTCTTCGATCT
Adapter, Index 1–12
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]ATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 13
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]CAATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 14
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]GAATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 15 and Index 21
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]CGATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 16 and Index 19
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]ACATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 18
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]TTATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 22
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]TAATCTCGTGATGCCGTCTTCTGTTG
Adapter, Index 23 and Index 25
5’ GATCGGAAGAGCGACACGTCTGAACCTCCAGTCAC[6 bases]ATATCTCGTGATGCCGTCTTCTGTTG

Index Adapters
In this set of adapters, index numbering does not include numbers 17, 24, or 26.

<table>
<thead>
<tr>
<th>LT Set A/B</th>
<th>Index Name</th>
<th>6-Base Sequence for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>AR001</td>
<td>ATCACG</td>
</tr>
<tr>
<td>A</td>
<td>AR002</td>
<td>CGATGT</td>
</tr>
<tr>
<td>B</td>
<td>AR003</td>
<td>TTAGGC</td>
</tr>
<tr>
<td>A</td>
<td>AR004</td>
<td>TGACCA</td>
</tr>
<tr>
<td>LT Set A/B</td>
<td>Index Name</td>
<td>6-Base Sequence for Sample Sheet</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>A</td>
<td>AR005</td>
<td>ACAGTG</td>
</tr>
<tr>
<td>A</td>
<td>AR006</td>
<td>GCCAAT</td>
</tr>
<tr>
<td>A</td>
<td>AR007</td>
<td>CAGATC</td>
</tr>
<tr>
<td>B</td>
<td>AR008</td>
<td>ACTTGA</td>
</tr>
<tr>
<td>B</td>
<td>AR009</td>
<td>GATCAG</td>
</tr>
<tr>
<td>B</td>
<td>AR010</td>
<td>TAGCTT</td>
</tr>
<tr>
<td>B</td>
<td>AR011</td>
<td>GGCTAC</td>
</tr>
<tr>
<td>A</td>
<td>AR012</td>
<td>CTTGTA</td>
</tr>
<tr>
<td>A</td>
<td>AR013</td>
<td>AGTCAA</td>
</tr>
<tr>
<td>A</td>
<td>AR014</td>
<td>AGTTCC</td>
</tr>
<tr>
<td>A</td>
<td>AR015</td>
<td>ATGTCA</td>
</tr>
<tr>
<td>A</td>
<td>AR016</td>
<td>CCGTCC</td>
</tr>
<tr>
<td>A</td>
<td>AR018</td>
<td>GTCCGC</td>
</tr>
<tr>
<td>A</td>
<td>AR019</td>
<td>GTGAAA</td>
</tr>
<tr>
<td>B</td>
<td>AR020</td>
<td>GTGGCC</td>
</tr>
<tr>
<td>B</td>
<td>AR021</td>
<td>GTTTCG</td>
</tr>
<tr>
<td>B</td>
<td>AR022</td>
<td>CGTACG</td>
</tr>
<tr>
<td>B</td>
<td>AR023</td>
<td>GAGTGGG</td>
</tr>
<tr>
<td>B</td>
<td>AR025</td>
<td>ACTGAT</td>
</tr>
<tr>
<td>B</td>
<td>AR027</td>
<td>ATTCCT</td>
</tr>
</tbody>
</table>
Illumina Nextera Adapters

Nextera Transposase Adapters
(Used for Nextera tagmentation)

Read 1
5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

Read 2
5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

Nextera Index Kit – PCR Primers

Index 1 Read
5’ CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG

Index 2 Read
5’ AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC

Nextera Index Kit - Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGCCTTA</td>
<td>N701</td>
<td>TAAGGCGA</td>
</tr>
<tr>
<td>CTAGTACG</td>
<td>N702</td>
<td>CGTACTAG</td>
</tr>
<tr>
<td>TTCTGCCT</td>
<td>N703</td>
<td>AGGCAGAA</td>
</tr>
<tr>
<td>GCTCAGGA</td>
<td>N704</td>
<td>TCCTGAGC</td>
</tr>
<tr>
<td>AGGAGTCC</td>
<td>N705</td>
<td>GGACTCCT</td>
</tr>
<tr>
<td>CATGCCTA</td>
<td>N706</td>
<td>TAGGCATG</td>
</tr>
<tr>
<td>GTAGAGAG</td>
<td>N707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>CCTCTCTG</td>
<td>N708</td>
<td>CAGAGAGG</td>
</tr>
<tr>
<td>AGCGTAGC</td>
<td>N709</td>
<td>GCTACGCT</td>
</tr>
<tr>
<td>CAGCCTCG</td>
<td>N710</td>
<td>CGAGGCTG</td>
</tr>
<tr>
<td>TGCCCTCTT</td>
<td>N711</td>
<td>AAGAGGCA</td>
</tr>
<tr>
<td>TCCTCTAC</td>
<td>N712</td>
<td>GTAGAGGA</td>
</tr>
</tbody>
</table>
Nextera Index Kit - Index 2 (i5) Adapters

The i5 index names vary for different Nextera products.

- **N50x**—Nextera DNA
- **S50x**—Nextera XT
- **H50x**—Nextera DNA Flex
- **E50x**—Nextera Enrichment and Nextera Rapid Capture Enrichment

### Bases in Adapter	i5 Index Name	i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500	i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000
TAGATCGC | [N/S/E]501 | TAGATCGC | GCGATCTA
CTCTCTAT | [N/S/E]502 | CTCTCTAT | ATAGAGAG
TATCCTCT | [N/S/E]503 | TATCCTCT | AGAGGATA
AGAGTAGA | [N/S/E]504 | AGAGTAGA | TCTACTCT
GTAAGGAG | [N/S/E]505 | GTAAGGAG | CTCCTTAC
ACTGCATA | [N/S/E]506 | ACTGCATA | TATGCAGT
AAGGAGTA | [N/S/E]507 | AAGGAGTA | TACTCCTT
CTAAGCCT | [N/S/E]508 | CTAAGCCT | AGGCTTAG
GCGTAAGA | [N/S/E]517 | GCGTAAGA | TCTTACGC

Nextera XT Index Kit v2 - Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGCCTTA</td>
<td>N701</td>
<td>TAAGGCGA</td>
</tr>
<tr>
<td>CTAGTACG</td>
<td>N702</td>
<td>CGTACTAG</td>
</tr>
<tr>
<td>TTCTGCCT</td>
<td>N703</td>
<td>AGGCAGAA</td>
</tr>
<tr>
<td>GCTCAGGA</td>
<td>N704</td>
<td>TCCTGAGC</td>
</tr>
<tr>
<td>AGGAGTCC</td>
<td>N705</td>
<td>GGACTCCT</td>
</tr>
<tr>
<td>CATGCCTA</td>
<td>N706</td>
<td>TAGGCATG</td>
</tr>
<tr>
<td>GTAGAGAG</td>
<td>N707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>CAGCCTCG</td>
<td>N710</td>
<td>CGAGGCTG</td>
</tr>
<tr>
<td>TGCCTCTT</td>
<td>N711</td>
<td>AAGAGGCA</td>
</tr>
<tr>
<td>TCCTCTAC</td>
<td>N712</td>
<td>GTAGAGGA</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCATGAGC</td>
<td>N714</td>
<td>GCTCATGA</td>
</tr>
<tr>
<td>CCTGAGAT</td>
<td>N715</td>
<td>ATCTCAGG</td>
</tr>
<tr>
<td>TAGCGAGT</td>
<td>N716</td>
<td>ACTCGCTA</td>
</tr>
<tr>
<td>GTAGCTCC</td>
<td>N718</td>
<td>GGAGCTAC</td>
</tr>
<tr>
<td>TACTACGC</td>
<td>N719</td>
<td>GCGTAGTA</td>
</tr>
<tr>
<td>AGGCTCCG</td>
<td>N720</td>
<td>CGGAGCCT</td>
</tr>
<tr>
<td>GCAGCGTA</td>
<td>N721</td>
<td>TACGCTGC</td>
</tr>
<tr>
<td>CTGCCGCAT</td>
<td>N722</td>
<td>ATGCGCAG</td>
</tr>
<tr>
<td>GAGCGCTA</td>
<td>N723</td>
<td>TAGCGCTC</td>
</tr>
<tr>
<td>CGCTCAGT</td>
<td>N724</td>
<td>ACTGAGCG</td>
</tr>
<tr>
<td>GTCTTAGG</td>
<td>N726</td>
<td>CCTAAGAC</td>
</tr>
<tr>
<td>ACTGATCG</td>
<td>N727</td>
<td>CGATCAGT</td>
</tr>
<tr>
<td>TAGCTGCA</td>
<td>N728</td>
<td>TGCAGCTA</td>
</tr>
<tr>
<td>GACGTGCA</td>
<td>N729</td>
<td>TCGAGCTC</td>
</tr>
</tbody>
</table>

Nextera XT Index Kit v2 - Index 2 (i5) Adapters

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCTCTAT</td>
<td>S502</td>
<td>CTCTCTAT</td>
<td>ATAGAGAG</td>
</tr>
<tr>
<td>TATCCTCT</td>
<td>S503</td>
<td>TATCCTCT</td>
<td>AGAGGATA</td>
</tr>
<tr>
<td>GTAAGGAG</td>
<td>S505</td>
<td>GTAAGGAG</td>
<td>CTCCTTAC</td>
</tr>
<tr>
<td>ACTGCATA</td>
<td>S506</td>
<td>ACTGCATA</td>
<td>TATGCAGT</td>
</tr>
<tr>
<td>AAGGAGTA</td>
<td>S507</td>
<td>AAGGAGTA</td>
<td>TACTCCTT</td>
</tr>
<tr>
<td>CTAAGCCT</td>
<td>S508</td>
<td>CTAAGCCT</td>
<td>AGGCTTAG</td>
</tr>
<tr>
<td>CGTCTAAT</td>
<td>S510</td>
<td>CGTCTAAT</td>
<td>ATTAGACG</td>
</tr>
<tr>
<td>TCTCTCCG</td>
<td>S511</td>
<td>TCTCTCCG</td>
<td>CGGAGAGA</td>
</tr>
<tr>
<td>TCGACTAG</td>
<td>S513</td>
<td>TCGACTAG</td>
<td>CTAGTCGA</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTCTAGCT</td>
<td>S515</td>
<td>TTCTAGCT</td>
<td>AGCTAGAA</td>
</tr>
<tr>
<td>CCTAGAGT</td>
<td>S516</td>
<td>CCTAGAGT</td>
<td>ACTCTAGG</td>
</tr>
<tr>
<td>GCGTAAGA</td>
<td>S517</td>
<td>GCGTAAGA</td>
<td>TCTTACGC</td>
</tr>
<tr>
<td>CTATTAAG</td>
<td>S518</td>
<td>CTATTAAG</td>
<td>CTTAATAG</td>
</tr>
<tr>
<td>AAGGCTAT</td>
<td>S520</td>
<td>AAGGCTAT</td>
<td>ATAGCCTT</td>
</tr>
<tr>
<td>GAGCCTTA</td>
<td>S521</td>
<td>GAGCCTTA</td>
<td>TAAGGCTC</td>
</tr>
<tr>
<td>TTATGCGA</td>
<td>S522</td>
<td>TTATGCGA</td>
<td>TCGCATAA</td>
</tr>
</tbody>
</table>

Nextera DNA CD Indexes - Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGCCTTA</td>
<td>H701</td>
<td>TAAGGCGA</td>
</tr>
<tr>
<td>CTAGTACG</td>
<td>H702</td>
<td>CGTACTAG</td>
</tr>
<tr>
<td>TTCTGCCT</td>
<td>H703</td>
<td>AGGCAGAA</td>
</tr>
<tr>
<td>AGGAGTCC</td>
<td>H705</td>
<td>GGACTCCT</td>
</tr>
<tr>
<td>CATGCCTA</td>
<td>H706</td>
<td>TAGGCATG</td>
</tr>
<tr>
<td>GTAGAGAG</td>
<td>H707</td>
<td>CTCTCTAC</td>
</tr>
<tr>
<td>CAGCCTCG</td>
<td>H710</td>
<td>CGAGGCTG</td>
</tr>
<tr>
<td>TGCCCTCTT</td>
<td>H711</td>
<td>AAGAGGCA</td>
</tr>
<tr>
<td>TCCTCTAC</td>
<td>H712</td>
<td>GTAGAGGA</td>
</tr>
<tr>
<td>TCATGAGC</td>
<td>H714</td>
<td>GCTCATGA</td>
</tr>
<tr>
<td>AGGCTCCG</td>
<td>H720</td>
<td>CGGAGCCT</td>
</tr>
<tr>
<td>GAGCGCTA</td>
<td>H723</td>
<td>TAGCGCTC</td>
</tr>
</tbody>
</table>
Nextera DNA CD Indexes - Index 2 (i5) Adapters

<table>
<thead>
<tr>
<th>Bases in Adapter</th>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TATCCTCT</td>
<td>H503</td>
<td>TATCCTCT</td>
<td>AGAGGATA</td>
</tr>
<tr>
<td>GTAAGGAG</td>
<td>H505</td>
<td>GTAAGGAG</td>
<td>CTCCTTAC</td>
</tr>
<tr>
<td>ACTGCATA</td>
<td>H506</td>
<td>ACTGCATA</td>
<td>TATGCAGT</td>
</tr>
<tr>
<td>CGTCTAAAT</td>
<td>H510</td>
<td>CGTCTAAAT</td>
<td>ATTAGACG</td>
</tr>
<tr>
<td>TCGACTAG</td>
<td>H513</td>
<td>TCGACTAG</td>
<td>CTAGTCGA</td>
</tr>
<tr>
<td>CCTAGAGT</td>
<td>H516</td>
<td>CCTAGAGT</td>
<td>ACTCTAGG</td>
</tr>
<tr>
<td>GCGTAAGA</td>
<td>H517</td>
<td>GCGTAAGA</td>
<td>TCTTACGC</td>
</tr>
<tr>
<td>TTATGCGA</td>
<td>H522</td>
<td>TTATGCGA</td>
<td>TCGCATAA</td>
</tr>
</tbody>
</table>

IDT for Illumina UD Indexes

These unique dual (UD) index adapters have been duplexed in the plate to enforce the recommended pairing strategy.

Index 1 (i7) Adapters

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC[i7]ATCTCGTATGCGTCTTCTGCTTG

Index 2 (i5) Adapters

AATGATACGGCGACCACCGAGATCTACAC[i5]AAGACCTTTCCCTACACGACGCTCTTCCGATCT

UD Index Name

<table>
<thead>
<tr>
<th>UD Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDI0001</td>
<td>CCGCGGGTT</td>
<td>AGCGCTAG</td>
<td>CTAGCGCT</td>
</tr>
<tr>
<td>UDI0002</td>
<td>TTATAACC</td>
<td>GATATCGA</td>
<td>TCGATATC</td>
</tr>
<tr>
<td>UDI0003</td>
<td>GGACTTGG</td>
<td>CGCAGACG</td>
<td>CGTCTGCG</td>
</tr>
<tr>
<td>UDI0004</td>
<td>AAGTCCCA</td>
<td>TATGAGTA</td>
<td>TACTCATA</td>
</tr>
<tr>
<td>UDI0005</td>
<td>ATCCACTG</td>
<td>AGGTGCCT</td>
<td>ACGCACCT</td>
</tr>
<tr>
<td>UDI0006</td>
<td>GCTTGCTCA</td>
<td>GAACATAC</td>
<td>GTATGCTC</td>
</tr>
<tr>
<td>UDI0007</td>
<td>CAAGCTAG</td>
<td>ACATAGCG</td>
<td>CGTATAGT</td>
</tr>
<tr>
<td>UDI0008</td>
<td>TGGATCGA</td>
<td>GTGCAGTA</td>
<td>TATCGCAG</td>
</tr>
<tr>
<td>UD Index Name</td>
<td>i7 Bases for Sample Sheet</td>
<td>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</td>
<td>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>UDI0009</td>
<td>AGTTCAAG</td>
<td>CCAACAGA</td>
<td>TCTGTGTTGG</td>
</tr>
<tr>
<td>UDI0010</td>
<td>GACCTGAAG</td>
<td>TGGTGAG</td>
<td>CTCACCAGA</td>
</tr>
<tr>
<td>UDI0011</td>
<td>TCTCTACT</td>
<td>CGCGGTTC</td>
<td>GAACCGCG</td>
</tr>
<tr>
<td>UDI0012</td>
<td>CTCTCGTC</td>
<td>TATAACCT</td>
<td>AGGTATA</td>
</tr>
<tr>
<td>UDI0013</td>
<td>CCAAGTCCT</td>
<td>AAGGATGA</td>
<td>TCATCTTT</td>
</tr>
<tr>
<td>UDI0014</td>
<td>TTGGACTTC</td>
<td>GGAACGAG</td>
<td>CTGCTTTCC</td>
</tr>
<tr>
<td>UDI0015</td>
<td>GCCGGTGAG</td>
<td>TCGTACC</td>
<td>GGCACAGA</td>
</tr>
<tr>
<td>UDI0016</td>
<td>AATCCGGA</td>
<td>CTACAGTT</td>
<td>AACTGTAG</td>
</tr>
<tr>
<td>UDI0017</td>
<td>TAATACAG</td>
<td>ATATCAC</td>
<td>GTGAATAT</td>
</tr>
<tr>
<td>UDI0018</td>
<td>CGGGCCTGA</td>
<td>GCCGCTGT</td>
<td>ACAGGCG</td>
</tr>
<tr>
<td>UDI0019</td>
<td>ATGTAACTG</td>
<td>ACTCTATG</td>
<td>CATAGAGT</td>
</tr>
<tr>
<td>UDI0020</td>
<td>GCAACGAC</td>
<td>GTCTCGCA</td>
<td>TGGAGAC</td>
</tr>
<tr>
<td>UDI0021</td>
<td>GTACCTTT</td>
<td>AAGACGTC</td>
<td>GACGTCTT</td>
</tr>
<tr>
<td>UDI0022</td>
<td>AACGTTCC</td>
<td>GAGTACT</td>
<td>AGTACTCC</td>
</tr>
<tr>
<td>UDI0023</td>
<td>GCAGAATT</td>
<td>ACCGGCCA</td>
<td>TGGCCGGA</td>
</tr>
<tr>
<td>UDI0024</td>
<td>ATGAGGCC</td>
<td>GTTAATTG</td>
<td>CAATTAAC</td>
</tr>
<tr>
<td>UDI0025</td>
<td>ACTAAGAT</td>
<td>AACCGCGG</td>
<td>CCGCGGTT</td>
</tr>
<tr>
<td>UDI0026</td>
<td>GTCGGAGC</td>
<td>GGTATAA</td>
<td>TTATAACC</td>
</tr>
<tr>
<td>UDI0027</td>
<td>CTTGGTAT</td>
<td>CCAAGTCC</td>
<td>GGACTTGG</td>
</tr>
<tr>
<td>UDI0028</td>
<td>TCAAACGC</td>
<td>TGGACTT</td>
<td>AAGTCGA</td>
</tr>
<tr>
<td>UDI0029</td>
<td>CGGTGAGA</td>
<td>CAGTGGA</td>
<td>ATCCACTG</td>
</tr>
<tr>
<td>UDI0030</td>
<td>TTACAGGA</td>
<td>TGACAAGC</td>
<td>GCTTTGCA</td>
</tr>
<tr>
<td>UDI0031</td>
<td>GGCATTCT</td>
<td>CTAGCTTG</td>
<td>CAAGCTAG</td>
</tr>
<tr>
<td>UDI0032</td>
<td>AATGCTCCT</td>
<td>TGATCC</td>
<td>TGGATCGA</td>
</tr>
<tr>
<td>UDI0033</td>
<td>TACCGAGG</td>
<td>CCTGAACT</td>
<td>AGTTCAAG</td>
</tr>
<tr>
<td>UDI0034</td>
<td>CGTTAGAA</td>
<td>TCCAGGTC</td>
<td>GACCTGAA</td>
</tr>
<tr>
<td>UDI0035</td>
<td>AGCCTCAT</td>
<td>AGTAGAGA</td>
<td>TCTCTACT</td>
</tr>
<tr>
<td>UDI0036</td>
<td>GATTCTGC</td>
<td>GACGAGA</td>
<td>CTCTCGTC</td>
</tr>
<tr>
<td>UDI0037</td>
<td>TCGTAGTGT</td>
<td>AGACTTGG</td>
<td>CCAACGTCA</td>
</tr>
<tr>
<td>UDI0038</td>
<td>CTACGACA</td>
<td>GAGTCGA</td>
<td>TTGAGCTC</td>
</tr>
<tr>
<td>UDI0039</td>
<td>TAAGTGGT</td>
<td>CTTAAGCC</td>
<td>GCTTTAAG</td>
</tr>
<tr>
<td>UDI0040</td>
<td>CGGACAAC</td>
<td>TCGGACTT</td>
<td>AATCCGGA</td>
</tr>
<tr>
<td>UDI0041</td>
<td>ATATGGAT</td>
<td>CCGGTAT</td>
<td>TAATACAG</td>
</tr>
<tr>
<td>UD Index Name</td>
<td>i7 Bases for Sample Sheet</td>
<td>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</td>
<td>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>UDI0042</td>
<td>GCGCAAGC</td>
<td>TCACGCG</td>
<td>CGCGGTGA</td>
</tr>
<tr>
<td>UDI0043</td>
<td>AAGATACCT</td>
<td>ACTTACAT</td>
<td>ATGTAAGT</td>
</tr>
<tr>
<td>UDI0044</td>
<td>GAGACGTC</td>
<td>GTCCGTGC</td>
<td>GCACGGAC</td>
</tr>
<tr>
<td>UDI0045</td>
<td>ATGGCATG</td>
<td>AAGGTACC</td>
<td>GGTACCTT</td>
</tr>
<tr>
<td>UDI0046</td>
<td>GCAATGCA</td>
<td>GGAACGTT</td>
<td>AACGTTC</td>
</tr>
<tr>
<td>UDI0047</td>
<td>GTTCCAAT</td>
<td>AATTCTGC</td>
<td>GCAGAATT</td>
</tr>
<tr>
<td>UDI0048</td>
<td>ACCTTGGC</td>
<td>GGCCTCAT</td>
<td>ATGAGGCC</td>
</tr>
<tr>
<td>UDI0049</td>
<td>ATATCTCG</td>
<td>ATCTTAGT</td>
<td>ACTAAGAT</td>
</tr>
<tr>
<td>UDI0050</td>
<td>GCGCTCTA</td>
<td>GCTCCGAC</td>
<td>GTCGGAGC</td>
</tr>
<tr>
<td>UDI0051</td>
<td>AACAGGTT</td>
<td>ATACCAAG</td>
<td>CTTTGTAT</td>
</tr>
<tr>
<td>UDI0052</td>
<td>GGTGAACC</td>
<td>GCGTTGGA</td>
<td>TCCAACGC</td>
</tr>
<tr>
<td>UDI0053</td>
<td>CAACAAATG</td>
<td>CTTCAGGG</td>
<td>CGTGAAG</td>
</tr>
<tr>
<td>UDI0054</td>
<td>TGTTGCGCA</td>
<td>TCTGTAA</td>
<td>TTACAGGA</td>
</tr>
<tr>
<td>UDI0055</td>
<td>AGGCAGAG</td>
<td>AGAATGCC</td>
<td>GGCATTCT</td>
</tr>
<tr>
<td>UDI0056</td>
<td>GAATGAGA</td>
<td>GAGCCATT</td>
<td>AATGCCCT</td>
</tr>
<tr>
<td>UDI0057</td>
<td>TGGGGGCT</td>
<td>CCTCGGTA</td>
<td>TACCGAGG</td>
</tr>
<tr>
<td>UDI0058</td>
<td>CATAATAC</td>
<td>TCTTAACG</td>
<td>CGTAGAA</td>
</tr>
<tr>
<td>UDI0059</td>
<td>GATCTATC</td>
<td>ATGAGGCT</td>
<td>AGCTCTCA</td>
</tr>
<tr>
<td>UDI0060</td>
<td>AGCTCGCT</td>
<td>GCGAGAATC</td>
<td>GATTCTGC</td>
</tr>
<tr>
<td>UDI0061</td>
<td>CGGAACCTG</td>
<td>CACTACGA</td>
<td>TGTAAGT</td>
</tr>
<tr>
<td>UDI0062</td>
<td>TAAGGTCA</td>
<td>TGTGCTAG</td>
<td>CTACGACA</td>
</tr>
<tr>
<td>UDI0063</td>
<td>TTGCTAG</td>
<td>ACCACTTA</td>
<td>TAAATGGT</td>
</tr>
<tr>
<td>UDI0064</td>
<td>CCATTGCA</td>
<td>GTTTGTCC</td>
<td>CGGACAC</td>
</tr>
<tr>
<td>UDI0065</td>
<td>ACACCTAG</td>
<td>ATCCATAT</td>
<td>ATATGGAT</td>
</tr>
<tr>
<td>UDI0066</td>
<td>GTGTTGCA</td>
<td>GCTTGC GG</td>
<td>GCGCAAGC</td>
</tr>
<tr>
<td>UDI0067</td>
<td>TTCTCTGGT</td>
<td>AGTATCTT</td>
<td>AAGATACT</td>
</tr>
<tr>
<td>UDI0068</td>
<td>CTTTCACC</td>
<td>GACGCCTCC</td>
<td>GGAGGTC</td>
</tr>
<tr>
<td>UDI0069</td>
<td>GCCACAGG</td>
<td>CATGCCAT</td>
<td>ATGCCAT</td>
</tr>
<tr>
<td>UDI0070</td>
<td>ATGTGGA</td>
<td>TGCATTGC</td>
<td>GCAATGCA</td>
</tr>
<tr>
<td>UDI0071</td>
<td>ACTCGTGT</td>
<td>ATTGGAAAC</td>
<td>GTTCCAT</td>
</tr>
<tr>
<td>UDI0072</td>
<td>GTCTACAC</td>
<td>GCCAAGG</td>
<td>ACCTTGGC</td>
</tr>
<tr>
<td>UDI0073</td>
<td>CAATTAAC</td>
<td>CGAGATAT</td>
<td>ATATCTCG</td>
</tr>
<tr>
<td>UDI0074</td>
<td>TGGCCGCTG</td>
<td>TAGAGCC</td>
<td>GCGCTCTA</td>
</tr>
</tbody>
</table>
TruSeq CD Indexes

Combinatorial dual (CD) index adapters for use with TruSeq (formally known as TruSeq HT).

D501–D508 Adapters

```
AATGATACGGCGACCACCGAGATCTACAC[15]ACACTCTTTCCCTACACGACGCTCTTCCGATCT
```

D701–D712 Adapters

```
GATCGGAAGAGACACAGCTCTGAACACTCCAGTCAC[17]ATCTCGTATGCGGCTCTTCTGTTG
```

<table>
<thead>
<tr>
<th>UD Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDI0075</td>
<td>AGTACTCC</td>
<td>AACCTGTT</td>
<td>AACAGGTT</td>
</tr>
<tr>
<td>UDI0076</td>
<td>GACGTCTT</td>
<td>GGTCCACC</td>
<td>GGTAACC</td>
</tr>
<tr>
<td>UDI0077</td>
<td>TGCGGAGAC</td>
<td>CATTGTGG</td>
<td>CAACATAG</td>
</tr>
<tr>
<td>UDI0078</td>
<td>CATAGAGT</td>
<td>TGCCACCA</td>
<td>TGTTGGA</td>
</tr>
<tr>
<td>UDI0079</td>
<td>ACAGGCGC</td>
<td>CTCTGCCT</td>
<td>AGGCAGAG</td>
</tr>
<tr>
<td>UDI0080</td>
<td>GACGTCTT</td>
<td>GGTTCACC</td>
<td>GGTAACC</td>
</tr>
<tr>
<td>UDI0081</td>
<td>AACTGTAG</td>
<td>ACGCCGCA</td>
<td>TGCCGCGT</td>
</tr>
<tr>
<td>UDI0082</td>
<td>GTGCACGA</td>
<td>GTATTATG</td>
<td>CATAAATAC</td>
</tr>
<tr>
<td>UDI0083</td>
<td>CTGGTCC</td>
<td>GATAGATC</td>
<td>GATCTATC</td>
</tr>
<tr>
<td>UDI0084</td>
<td>TCATCCTT</td>
<td>AGCGAGCT</td>
<td>AGCTCGCT</td>
</tr>
<tr>
<td>UDI0085</td>
<td>AGGTTATA</td>
<td>CAGTTCCG</td>
<td>CGGAACTG</td>
</tr>
<tr>
<td>UDI0086</td>
<td>GAACCGCG</td>
<td>TGACCTTA</td>
<td>TAAGGTC</td>
</tr>
<tr>
<td>UDI0087</td>
<td>CTACACCA</td>
<td>CTAGGCAA</td>
<td>TTGCGTAG</td>
</tr>
<tr>
<td>UDI0088</td>
<td>TCAGGGCA</td>
<td>TCGATTTG</td>
<td>CCATTCGA</td>
</tr>
<tr>
<td>UDI0089</td>
<td>TATCGCAC</td>
<td>CTTAGGTG</td>
<td>TACATAGA</td>
</tr>
<tr>
<td>UDI0090</td>
<td>CGCTATGT</td>
<td>TCCGACAC</td>
<td>GTGTCGGA</td>
</tr>
<tr>
<td>UDI0091</td>
<td>GTATGTTC</td>
<td>AACAGGAA</td>
<td>TTCCCTTTG</td>
</tr>
<tr>
<td>UDI0092</td>
<td>ACAGACCT</td>
<td>GGTGAGAG</td>
<td>CTTCCACC</td>
</tr>
<tr>
<td>UDI0093</td>
<td>TACTCATA</td>
<td>CCTGTCGG</td>
<td>GCCACAGG</td>
</tr>
<tr>
<td>UDI0094</td>
<td>CTGTCCGC</td>
<td>TTCAACAT</td>
<td>ATGTCGGA</td>
</tr>
<tr>
<td>UDI0095</td>
<td>TCGATATC</td>
<td>ACACGAGT</td>
<td>ACTCGTGT</td>
</tr>
<tr>
<td>UDI0096</td>
<td>CTAGCGCT</td>
<td>GTGTAGAC</td>
<td>GCAGTCAG</td>
</tr>
</tbody>
</table>
Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>D701</td>
<td>ATTACTCG</td>
</tr>
<tr>
<td>D702</td>
<td>TCCGGAGA</td>
</tr>
<tr>
<td>D703</td>
<td>CGCTCATT</td>
</tr>
<tr>
<td>D704</td>
<td>GAGATTCC</td>
</tr>
<tr>
<td>D705</td>
<td>ATTCAGAA</td>
</tr>
<tr>
<td>D706</td>
<td>GAATTCTG</td>
</tr>
<tr>
<td>D707</td>
<td>CTGAAGCT</td>
</tr>
<tr>
<td>D708</td>
<td>TAATGCGC</td>
</tr>
<tr>
<td>D709</td>
<td>CGGCTATG</td>
</tr>
<tr>
<td>D710</td>
<td>TCCGCGAA</td>
</tr>
<tr>
<td>D711</td>
<td>TCTCGCGC</td>
</tr>
<tr>
<td>D712</td>
<td>AGCGATAG</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapters

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>D501</td>
<td>TATAGCCT</td>
<td>AGGCTATA</td>
</tr>
<tr>
<td>D502</td>
<td>ATAGAGGC</td>
<td>GCCTCTAT</td>
</tr>
<tr>
<td>D503</td>
<td>CCTATCCT</td>
<td>AGGATAGG</td>
</tr>
<tr>
<td>D504</td>
<td>GGCTCTGA</td>
<td>TCAGAGCC</td>
</tr>
<tr>
<td>D505</td>
<td>AGGCCGAAG</td>
<td>CTTCGCCT</td>
</tr>
<tr>
<td>D506</td>
<td>TAATCTTA</td>
<td>TAAGATTA</td>
</tr>
<tr>
<td>D507</td>
<td>CAGGACGT</td>
<td>ACGTCCTG</td>
</tr>
<tr>
<td>D508</td>
<td>GTACTGAC</td>
<td>GTCAGTAC</td>
</tr>
</tbody>
</table>
TruSeq Single Indexes

Index sequences are 6 bases as underlined. Enter the underlined 6 bases on the sample sheet.

TruSeq Universal Adapter
5’ AATGATACGGGACACACCTTACACCTTATACACGTATGCTCTTCTCGATCT

TruSeq Index Adapters (Index 1–27)
Index numbers 17, 24, and 26 are reserved.

TruSeq Adapter, Index 1
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 2
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 3
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 4
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 5
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 6
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 7
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 8
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 9
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 10
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 11
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 12
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG

TruSeq Adapter, Index 13
5’ GATCGGAAGACACAGTCTTAACAGTTGATCTAGACAGATCTCGTATGCTGCTTG
Illumina Adapter Sequences

TruSeq Adapter, Index 14
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACAGTTCCGTATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 15
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGAATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 16
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCGATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 18
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCACATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 19
5’ GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAACGATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 20
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACGTGGCCTTATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 21
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACGTTTCGGAATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 22
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACCGTACGTAATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 23
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 25
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACACTGATATATCTCGTATGCCGTCTTCTGCTTG

TruSeq Adapter, Index 27
5’ GATCGGAAGAGCACACGTCTGAAACTCCAGTCACATTCCTTTATCTCGTATGCCGTCTTCTGCTTG

TruSeq Amplicon Kits

Includes TruSeq Custom Amplicon 1.5, TruSeq Amplicon Cancer Panel, and TruSeq Custom Amplicon Low Input.

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A701</td>
<td>ATCACGAC</td>
</tr>
<tr>
<td>A702</td>
<td>ACGATGTT</td>
</tr>
<tr>
<td>A703</td>
<td>CAGATCCA</td>
</tr>
<tr>
<td>A704</td>
<td>ACAACCGG</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

i7 Index Name

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A705</td>
<td>ACCCAGCA</td>
</tr>
<tr>
<td>A706</td>
<td>AACCCCTC</td>
</tr>
<tr>
<td>A707</td>
<td>CCAACCT</td>
</tr>
<tr>
<td>A708</td>
<td>CACCACAC</td>
</tr>
<tr>
<td>A709</td>
<td>GAAACCCA</td>
</tr>
<tr>
<td>A710</td>
<td>TGTGACCA</td>
</tr>
<tr>
<td>A711</td>
<td>AGGGTCAA</td>
</tr>
<tr>
<td>A712</td>
<td>AGGAGTGG</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A501</td>
<td>TGAACCTT</td>
<td>AAGGTTCA</td>
</tr>
<tr>
<td>A502</td>
<td>TGCTAAGT</td>
<td>ACTTAGCA</td>
</tr>
<tr>
<td>A503</td>
<td>TGTTCTCT</td>
<td>AGAGAACA</td>
</tr>
<tr>
<td>A504</td>
<td>TAAGACAC</td>
<td>GTGTCTTA</td>
</tr>
<tr>
<td>A505</td>
<td>CTAATCGA</td>
<td>TCGATTAG</td>
</tr>
<tr>
<td>A506</td>
<td>CTAGAACA</td>
<td>TGTTCTAG</td>
</tr>
<tr>
<td>A507</td>
<td>TAAGTTCC</td>
<td>GGAACCTA</td>
</tr>
<tr>
<td>A508</td>
<td>TAGACCTA</td>
<td>TAGGTCTA</td>
</tr>
</tbody>
</table>

TruSeq DNA Methylation

Index PCR Primers

5’ CAAGCAGAAGACGGCATACGAGAT[6 bases]GTGACTGGAGTTCCAGACGTGTGCTCTTTCCCATCT

Index Adapters

<table>
<thead>
<tr>
<th>Index Name</th>
<th>6-Base Sequence for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 1</td>
<td>ATCACG</td>
</tr>
<tr>
<td>Index 2</td>
<td>CGATGT</td>
</tr>
</tbody>
</table>
Illumina Adapter Sequences

<table>
<thead>
<tr>
<th>Index Name</th>
<th>6-Base Sequence for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 3</td>
<td>TTAGGC</td>
</tr>
<tr>
<td>Index 4</td>
<td>TGACCA</td>
</tr>
<tr>
<td>Index 5</td>
<td>ACAGTG</td>
</tr>
<tr>
<td>Index 6</td>
<td>GCCAAT</td>
</tr>
<tr>
<td>Index 7</td>
<td>CAGATC</td>
</tr>
<tr>
<td>Index 8</td>
<td>ACTTGA</td>
</tr>
<tr>
<td>Index 9</td>
<td>GATCAG</td>
</tr>
<tr>
<td>Index 10</td>
<td>TAGCTT</td>
</tr>
<tr>
<td>Index 11</td>
<td>GGCTAC</td>
</tr>
<tr>
<td>Index 12</td>
<td>CTTGTA</td>
</tr>
</tbody>
</table>

TruSeq Ribo Profile

3’ Adapter
5’ AGATCGGAAGAGCACACGTCT

Forward PCR Primer
5’ ATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGACG

Index PCR Primers
5’ CAAGCAGAAGACGGCATACGAGAT[6 bases]GTGACTGGAGTTCCAGACGTGTGCTTTCCGATCT

Index Adapters

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Six-Base Sequence for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A001</td>
<td>ATCACG</td>
</tr>
<tr>
<td>A002</td>
<td>CGATGT</td>
</tr>
<tr>
<td>A003</td>
<td>TTAGGC</td>
</tr>
<tr>
<td>A004</td>
<td>TGACCA</td>
</tr>
<tr>
<td>A005</td>
<td>ACAGTG</td>
</tr>
<tr>
<td>A006</td>
<td>GCCAAT</td>
</tr>
<tr>
<td>Index Name</td>
<td>Six-Base Sequence for Sample Sheet</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>A007</td>
<td>CAGATC</td>
</tr>
<tr>
<td>A008</td>
<td>ACTTGA</td>
</tr>
<tr>
<td>A009</td>
<td>GATCAG</td>
</tr>
<tr>
<td>A010</td>
<td>TAGCTT</td>
</tr>
<tr>
<td>A011</td>
<td>GGCTAC</td>
</tr>
<tr>
<td>A012</td>
<td>CTTGTA</td>
</tr>
</tbody>
</table>

TruSeq Synthetic Long-Read DNA

Double-stranded DNA adapter containing long-range PCR primer binding site, sequencing primer binding site, and end marker sequence.

Long Reads Adapter

5’ CCGTTCTTCCCTGCCGAACCCTATCTTTGTCGCGCAGCGTCAGATGTATATAAGAGACAGTACGCTTGCAT

TruSeq Small RNA

RNA 5’ Adapter (RA5)

5’ GUUCAGAGUUCUACAGUCCGACGAUC

RNA 3’ Adapter (RA3)

5’ TGGAATTCTCGGGTGCCAAGG

Stop Oligo (STP)

5’ GAAUUCACCACGUUCCGUGG

RNA RT Primer (RTP)

5’ GCCTTGGCACCAGGAAATTCCA

RNA PCR Primer (RP1)

5’ AATGATAACGGCAACCCCGAGATCTACACGTTCAGAGTTCTACAGTCCGA

RNA PCR Index Primers (RPI1–RPI48)

Index sequence is 6 bases as underlined. Enter the underlined 6 bases on the sample sheet. Index sequences are read in the reverse complement in TruSeq small RNA libraries.
RNA PCR Primer, Index 1 (RPI1)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 2 (RPI2)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 3 (RPI3)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 4 (RPI4)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 5 (RPI5)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 6 (RPI6)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 7 (RPI7)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 8 (RPI8)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 9 (RPI9)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 10 (RPI10)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 11 (RPI11)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 12 (RPI12)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 13 (RPI13)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 14 (RPI14)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 15 (RPI15)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 16 (RPI16)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 17 (RPI17)
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCTGCTCCTGTCACCCGAGAATTCCA
RNA PCR Primer, Index 18 (RPI18)
5’ CAAGCAGAAGACGGCATACGAGATGCCGACGTGACTGGAGTGTCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 19 (RPI19)
5’ CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 20 (RPI20)
5’ CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 21 (RPI21)
5’ CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 22 (RPI22)
5’ CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 23 (RPI23)
5’ CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 24 (RPI24)
5’ CAAGCAGAAGACGGCATACGAGATGCTACCGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 25 (RPI25)
5’ CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 26 (RPI26)
5’ CAAGCAGAAGACGGCATACGAGATGCTCATGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 27 (RPI27)
5’ CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 28 (RPI28)
5’ CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 29 (RPI29)
5’ CAAGCAGAAGACGGCATACGAGATGCCATGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 30 (RPI30)
5’ CAAGCAGAAGACGGCATACGAGATATCGTGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 31 (RPI31)
5’ CAAGCAGAAGACGGCATACGAGATGCGCTGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 32 (RPI32)
5’ CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 33 (RPI33)
5’ CAAGCAGAAGACGGCATACGAGATGCCATGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 34 (RPI34)
5’ CAAGCAGAAGACGGCATACGAGATGCGCTGGTGACTGGAGTTCCTTGGCACCAGAATTCCA
RNA PCR Primer, Index 35 (RPI35)
5’ CAAGCAGAAGACGGCATACGAGATAAAATGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 36 (RPI36)
5’ CAAGCAGAAGACGGCATACGAGATTGTTGGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 37 (RPI37)
5’ CAAGCAGAAGACGGCATACGAGATATTCCGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 38 (RPI38)
5’ CAAGCAGAAGACGGCATACGAGATAGCTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 39 (RPI39)
5’ CAAGCAGAAGACGGCATACGAGATGTATAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 40 (RPI40)
5’ CAAGCAGAAGACGGCATACGAGATAGCTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 41 (RPI41)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 42 (RPI42)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 43 (RPI43)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 44 (RPI44)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 45 (RPI45)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 46 (RPI46)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 47 (RPI47)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

RNA PCR Primer, Index 48 (RPI48)
5’ CAAGCAGAAGACGGCATACGAGATGCTGTAGGTGACTGGAGTTTGGCACCAGGAATTCCA

TruSeq Targeted RNA Expression

Index 1 (i7) Adapters

<table>
<thead>
<tr>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
<th>i7 Index Name</th>
<th>i7 Bases for Sample Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>R701</td>
<td>ATCACG</td>
<td>R725</td>
<td>ACTGAT</td>
</tr>
<tr>
<td>i7 Index Name</td>
<td>i7 Bases for Sample Sheet</td>
<td>i7 Index Name</td>
<td>i7 Bases for Sample Sheet</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>R702</td>
<td>CGATGT</td>
<td>R726</td>
<td>ATGAGC</td>
</tr>
<tr>
<td>R703</td>
<td>TTAGGG</td>
<td>R727</td>
<td>ATTCCT</td>
</tr>
<tr>
<td>R704</td>
<td>TGACCA</td>
<td>R728</td>
<td>CAAAAG</td>
</tr>
<tr>
<td>R705</td>
<td>ACAGTG</td>
<td>R729</td>
<td>CAACTA</td>
</tr>
<tr>
<td>R706</td>
<td>GCCAAT</td>
<td>R730</td>
<td>CACCGG</td>
</tr>
<tr>
<td>R707</td>
<td>CAGATC</td>
<td>R731</td>
<td>CACGAT</td>
</tr>
<tr>
<td>R708</td>
<td>ACTTTA</td>
<td>R732</td>
<td>CACTCA</td>
</tr>
<tr>
<td>R709</td>
<td>GATCAG</td>
<td>R733</td>
<td>CAGGCG</td>
</tr>
<tr>
<td>R710</td>
<td>TAGCTT</td>
<td>R734</td>
<td>CATGGC</td>
</tr>
<tr>
<td>R711</td>
<td>GGCTAC</td>
<td>R735</td>
<td>CATTTT</td>
</tr>
<tr>
<td>R712</td>
<td>CTTGTA</td>
<td>R736</td>
<td>CCAACA</td>
</tr>
<tr>
<td>R713</td>
<td>AGTCAA</td>
<td>R737</td>
<td>CGGAAT</td>
</tr>
<tr>
<td>R714</td>
<td>AGTTCC</td>
<td>R738</td>
<td>CTAGCT</td>
</tr>
<tr>
<td>R715</td>
<td>ATGTCA</td>
<td>R739</td>
<td>CTATAC</td>
</tr>
<tr>
<td>R716</td>
<td>CCGTCC</td>
<td>R740</td>
<td>CTCAGA</td>
</tr>
<tr>
<td>R717</td>
<td>GTAGAG</td>
<td>R741</td>
<td>GACGAC</td>
</tr>
<tr>
<td>R718</td>
<td>GTCCGC</td>
<td>R742</td>
<td>TAATCG</td>
</tr>
<tr>
<td>R719</td>
<td>GTGAAA</td>
<td>R743</td>
<td>TACAGC</td>
</tr>
<tr>
<td>R720</td>
<td>GTGGCC</td>
<td>R744</td>
<td>TATAAT</td>
</tr>
<tr>
<td>R721</td>
<td>GTTTCG</td>
<td>R745</td>
<td>TCATTC</td>
</tr>
<tr>
<td>R722</td>
<td>CGTACG</td>
<td>R746</td>
<td>TCCCCA</td>
</tr>
<tr>
<td>R723</td>
<td>GAGTGG</td>
<td>R747</td>
<td>TCAGGA</td>
</tr>
<tr>
<td>R724</td>
<td>GTGAGC</td>
<td>R748</td>
<td>TCGGCA</td>
</tr>
</tbody>
</table>

Index 2 (i5) Adapter

<table>
<thead>
<tr>
<th>i5 Index Name</th>
<th>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</th>
<th>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A501</td>
<td>TGAACCTT</td>
<td>AAGGTTCA</td>
</tr>
<tr>
<td>i5 Index Name</td>
<td>i5 Bases for Sample Sheet NovaSeq, MiSeq, HiSeq 2000/2500</td>
<td>i5 Bases for Sample Sheet MiniSeq, NextSeq, HiSeq 3000/4000</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>A502</td>
<td>TGCTAAGT</td>
<td>ACTTAGCA</td>
</tr>
<tr>
<td>A503</td>
<td>TGTTCTCT</td>
<td>AGAGAACA</td>
</tr>
<tr>
<td>A504</td>
<td>TAAGACAC</td>
<td>GTGTCTTA</td>
</tr>
<tr>
<td>A505</td>
<td>CTAATCGA</td>
<td>TCGATTAG</td>
</tr>
<tr>
<td>A506</td>
<td>CTAGAACA</td>
<td>TGTCTTAG</td>
</tr>
<tr>
<td>A507</td>
<td>TAAGTTCC</td>
<td>GGAACCTTA</td>
</tr>
<tr>
<td>A508</td>
<td>TAGACCTA</td>
<td>TAGGTCTTA</td>
</tr>
</tbody>
</table>
Appendix

Process Controls for TruSeq Kits

Included in TruSeq DNA PCR-Free, TruSeq Nano DNA, TruSeq RNA (v1/v2/LT/HT), and TruSeq Exome Kits.

CTE2 - 150bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

CTE2 - 250bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

CTE2 - 350bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

CTE2 - 450bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

CTE2 - 550bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

CTE2 - 650bp
ATCCTGCAGATGCAAGTACTATGATGGCAGCCTAGTTAATACCTTAGCTAAGGAGATAGCTGTAATAACCTTTAAGAGTCTGTTTTTGAGTGTAAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCGAAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGAT

Document # 1000000002694 v06
February 2018
CTE2 - 750bp
ATCCTGCAGATGCATCCTAGTATGGGACCGGGGATCCTTGGACCGTTAATTCATATATCGAAGTAGCAGGTTGTTGCCCCGCCTGATGTTGCCACTACTTGCTCATGACAGTTTTTTTAGGCAATGCAAACTACTATTTGATATTTTTTTCCAAGTACAGTTGTAGGGTACTCCTTATACTGATTCTTCTGAGCCTGTACGGGGAGCATTAGGTACTGATGTAGTAGGAGTTGAGCTTCACAAATTCACCAGGTAAGCCCAAATTTATTTTCTGCTTGGACAGGTCCACCTCACATGGGTCTGTCTAATATATTAAGAGGGATTTTCTTTGCTGTATTGCAGCCCAGTATATCTGTTACTTACAGTAGTAGTCCATTATTGCTGGCCTAGGGCTTTTGCTCCTACACGAACACCACTCTCGACATTTTAAAAATTTGGGCTGTCCCTTATACGGATGCATTTAATACACCATGCTATACCCCTTAACAGAGAATAGTACGCTTCACAGATCCTCCTCTCGTTTTTTTTTTTATACGGCATGCTATTACACCATCATCGACATCTTATTTATAGGGAAGCAGCAGCCACTCTTTCATTACCCCATGCTTCTTTTA}
Illumina Adapter Sequences

CTE1 - 623bp

GATCCGCTCGCACTTAGTAAAGGGGTTTCCGGCTCGTCTAGTCTGCCTGAGATGTAATAATATCATGTA

CTE1 - 723bp

GATCCGCTCGCACTTAGTAAAGGGGTTTCCGGCTCGTCTAGTCTGCCTGAGATGTAATAATATCATGTA

CTE1 - 823bp

GATCCGCTCGCACTTAGTAAAGGGGTTTCCGGCTCGTCTAGTCTGCCTGAGATGTAATAATATCATGTA

CTA - 150bp

GGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCG

CTA - 250bp

GGGGGATCCTTATCTGTCAAAACCGCTAATGTCCGTTCTAAGACCGTCTGGAGAACACTTGCCCATCAGTGCTTTTGAAC

CTA - 350bp

GGGGGATCCTAGAGACCATTCGCGATTCCATGAGACTCCAAGGGTTCTGCACAACTTATGCACCTCTATTAGATCATTGT

CTA - 150bp

GGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCG

CTA - 250bp

GGGGGATCCTTATCTGTCAAAACCGCTAATGTCCGTTCTAAGACCGTCTGGAGAACACTTGCCCATCAGTGCTTTTGAAC

CTA - 350bp

GGGGGATCCTAGAGACCATTCGCGATTCCATGAGACTCCAAGGGTTCTGCACAACTTATGCACCTCTATTAGATCATTGT
Illumina Adapter Sequences

TTGATATATTTGAGAGGAGCATTGGAGCTTGCCCCCTTCAATGAGAGGATGCTTATGCTTATGCTATGCGGAATAATCCACCTCTAACTCTCAGTCTACATGACATAGAGGACTTCTAACAGTGACTCGCGGCCGCGATATCCTGCAGATGCATCCAGTACTAGTATGCGC

CTA - 450bp
GGGGGATCCGTTAGCTATCGTTCGCGAGAAAGTTAGTAGACACACAGGACCCAGGCTGCAAGTCAATTTCAGCTGACACCAACCGATTCTGGTTAAAAGAGCCTATGGCCACCCTTATTTATGAAGAAAAAACAACCTCTAATGCTGTTGAGGCGACTAGAAAAAGCTAACCTAGTCCGTTTCTGGACGACTTCATTGGGAATAACATACCCCCCACTGTGACTGCTACCTGCAAACTTATAGAGGACTCTGCTCTATGCATCTGACATACCCCTAATGCAATTTTGGGATTCCCTTTTAGTTGCTTTCATTAAAATGTACAGCAGCAGTAAAAAAAGCACAAAGTATATTGTTTATGTAACTCACTATCTCATTTGCACTGGTTACATGGCAGCTTCAGACTGACTAAAACTACCTTTTCCCACCATGGTTCAAAGATCAACAGAACTGGGCCAACAAAAGCAATTTTTTCATGTGGTCATTACCAACTTATTATGAGTTAAGTTACTTTTAGGTTTAAAATCACAGCAGTTTTTCCCTCCACACCTCCCAGAGATACTTTTACCTGGAGCTATGCTGTGTCCTGACAACCGCTGAAGCATTGGAATTCAGCTATTTATCCGATCGTTTATATGGGCGTGCGGCCGCGATATCCTGCAGATGCATCCAGTACTAGTATGCGC

CTA - 550bp
GGGGGATCCGCTCGCACTTAGCCTGTTAAGGGGTTCGCGCTCGTCTAGTCTGTGCTGTTGCCTGGATAGTAAATTATCATGGTACAAACTTTTAAGAGCCAGTTAAATGGAGATGGATTTAAAAAGAGTTATTGTAAAGTCTCCCCAGGTGTGTCATTAAATATCCCAACAGATTGCCCTGGCCTGACCCCCTAAATGCAATTTTGGGATTCCCTTTTAGTTGCTTTCATTAAAATGTACAGCAGCAGTAAAAAAAGCACAAAGTATATTGTTTATGTAACTCACTATCTCATTTGCACTGGTTACATGGCAGCTTCAGACTGACTAAAACTACCTTTTCCCACCATGGTTCAAAGATCAACAGAACTGGGCCAACAAAAGCAATTTTTTCATGTGGTCATTACCAACTTATTATGAGTTAAGTTACTTTTAGGTTTAAAATCACAGCAGTTTTTCCCTCCACACCTCCCAGAGATACTTTTACCTGGAGCTATGCTGTGTCCTGACAACCGCTGAAGCATTGGAATTCAGCTATTTATCCGATCGTTTATATGGGCGTGCGGCCGCGATATCCTGCAGATGCATCCAGTACTAGTATGCGC

CTA - 650bp
GGGGGATCCCTTGACCTATAGCCTGTTAAGGGGTTCGCGCTCGTCTAGTCTGTGCTGTTGCCTGGATAGTAAATTATCATGGTACAAACTTTTAAGAGCCAGTTAAATGGAGATGGATTTAAAAAGAGTTATTGTAAAGTCTCCCCAGGTGTGTCATTAAATATCCCAACAGATTGCCCTGGCCTGACCCCCTAAATGCAATTTTGGGATTCCCTTTTAGTTGCTTTCATTAAAATGTACAGCAGCAGTAAAAAAAGCACAAAGTATATTGTTTATGTAACTCACTATCTCATTTGCACTGGTTACATGGCAGCTTCAGACTGACTAAAACTACCTTTTCCCACCATGGTTCAAAGATCAACAGAACTGGGCCAACAAAAGCAATTTTTTCATGTGGTCATTACCAACTTATTATGAGTTAAGTTACTTTTAGGTTTAAAATCACAGCAGTTTTTCCCTCCACACCTCCCAGAGATACTTTTACCTGGAGCTATGCTGTGTCCTGACAACCGCTGAAGCATTGGAATTCAGCTATTTATCCGATCGTTTATATGGGCGTGCGGCCGCGATATCCTGCAGATGCATCCAGTACTAGTATGCGC

CTA - 750bp
GGGGGATCCCTAAGTCGTGTCCTTCTCCTACGATCTTGTGAACGATGGATATTTTCTTTCTAAACTTTAAACAAACAGTGAGAGATGTTGTTGTGTGTGGAACGACGCTTAGCCTACCGAGGAAGATCCAGACTACAATAGAATATGTGGCCAAAACTCCTCCGCAACTTCAGCAGCAAAAAGGATATTATTGACATAACCTCCTCACAAAAAGTACACAAATGGCTAAATAACAGAGCCCTCTTTTTACTAGGGAAATGGTGGATGTGGACTTTAGAATTTAAGATAATAAAGCTCTTGATCCCAATGTTATTTCCATGTGAGGGACATTAAATTGAGTAACCTTTGCCACATACCCTCTCCCAGAGTCCATTCTCTAAAACTTGAAGCTCCGCCCCTTTTTACGCACATTAGGCTTCCAATTACGGTCAATGGTCTTGAAGATTGGGAGCTTTTGAAGAGTAATAAGAACCATCACA AAAAGGAACCCAGAAGCCGGGAGTGTCTACCAAAAAATTCAAGGGTTAAAAAAAAGTGACATTTTCTCCTGTTTTTTACATGATTTTGAATGCTGATGGGTCCACGTCCAGCTCTAAAGGTAGGTTCATGGTTCTCCAAAGTTGCTTTCTTGTCAGA

CTA - 850bp
GGGGGATCCTTAAGTCGTGTCCTTCTCCTACGATCTTGTGAACGATGGATATTTTCTTTCTAAACTTTAAACAAACAGTGAGAGATGTTGTTGTGTGTGGAACGACGCTTAGCCTACCGAGGAAGATCCAGACTACAATAGAATATGTGGCCAAAACTCCTCCGCAACTTCAGCAGCAAAAAGGATATTATTGACATAACCTCCTCACAAAAAGTACACAAATGGCTAAATAACAGAGCCCTCTTTTTACTAGGGAAATGGTGGATGTGGACTTTAGAATTTAAGATAATAAAGCTCTTGATCCCAATGTTATTTCCATGTGAGGGACATTAAATTGAGTAACCTTTGCCACATACCCTCTCCCAGAGTCCATTCTCTAAAACTTGAAGCTCCGCCCCTTTTTACGCACATTAGGCTTCCAATTACGGTCAATGGTCTTGAAGATTGGGAGCTTTTGAAGAGTAATAAGAACCATCACA AAAAGGAACCCAGAAGCCGGGAGTGTCTACCAAAAAATTCAAGGGTTAAAAAAAAGTGACATTTTCTCCTGTTTTTTACATGATTTTGAATGCTGATGGGTCCACGTCCAGCTCTAAAGGTAGGTTCATGGTTCTCCAAAGTTGCTTTCTTGTCAGA
Illumina Adapter Sequences

ATTGAGCCACATCAGGTAGTTGGGAAGTAGATGAGTGAGGAGGATTCAATATGAGGAGGACTGGACAGAAATGCTTGAAGGCTCGTATTACCTCAACATACATGCTCTTGGGCACTGGGAACAGAATGCTTCAATAACACGAGCTGACGAGGGCCCGCTATGAAAAAAAAGATTCTCTGTGCCCCCTGGCGCCTCCGCACTTAAAGAATTGATGACCGTGCCGCCCGCGATATCCTGCAAGATGCATCCAGTACCATCCAGTAC

CTL - 150bp
AGATATGCCCGGGGGATCTCTACGTCTCCTCAAAAAAGGCTAATGTCGTTGCTAAACACTTGCCCCATCTAGTCTTGGTACCTGGACACCTAACACTTGGAAGAGCTTAGAACGATGGCCGCACTTGTCCTGCTAGCTATGACATGATGTTGACCTACAGCTTCCACATGGCTCAGCTGCAGCACTTCAAGACTATTCTGGCTTCCTGGGTACTTAAAAACAGGCGTAGTTAGATGGCTGTGCAAAAATGCACTCTAAACGCTAGCTTAGGTCTTCTGCAGCCCGATATCCTGCAAGATGCATCCAGTAC

CTL - 250bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACTAGTATGGCCC

CTL - 350bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACA

CTL - 450bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACA

CTL - 550bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACA

CTL - 650bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACA

CTL - 750bp
AGTATGGCCCGGGGGATCCTACGTTCCAAATGCAGCGAGCTCGTATAACCCTTTAAGAGTTGCTCTTTTTGTTTGGTAAGTTGCAAATCAGAGTTTTAGATTGAGTTCTACGTCGAGCGGCCGCGATATCCTGCAGATGCATCCAGTACA

Document # 1000000002694 v06
February 2018
Illumina Adapter Sequences

CCAAATTTATTTTCGCTGGAGCATTCCCCACCTTGCTTGCTGCTAATATATATTAAGAGGATTTTCTTTGCTGTA
TTGCGAGCCCGATATATCTGGTAACTTCAATCAATGATTCGCTTGGGCCTAGGGGCTTTTGCTCCTACACGAACACCA
CTCTGTAATATTTTGAGGCTGCTTCTTGAAGTCAACATCTTGCACTACCCCTTCCCCAGCGCTACATCAGATCTGTT
GCCGCCCACTATTCTTTTTCACCGAGAAGCTACTTTTAGTTATAGCTGGCAAGAGATTTCTCTGGAATGATGAGGATG
CTCACTTTTAAACACCGGAGGTGGATGTGGGGCCAGGAAATATCTGAATAACGATACGGGACTTCTAACAGTGACCT
CGCCGATATCCTGCAGATCCACCTCATACGAGATGTGTATAAGAGACAG

CTL - 850bp

AGTATGGCCCGGGGGATCCTTAAGTCGTGTCCTTCTCCTACGATCTTGTGAAGGATGGATATTTTCTTTCTAAA
ACTTTAAAAACACGTGGAGAGATGTTTGTGTGTTTGAACAGCGCTTTAGCTACCGAGGAAGATCCAGACTA
CAATAGAATATTGGCCCAAAAATCTCCGCAACTTACAGCAGCAAAAGATATATTACATACTACCTCCTACA
AAAAGTACCACAAATGTGCTAAATACACAGGGCCCTTCTTTTAACGGAATGTTGAGTGGAGCTTATTAAGATT
TAAGAATATAAGCTCTCTGATCCCCAATGTGTTATTTTCTCCATGTTGAGGACATTAAAATTTGAGTAACCTTTTGCCACAT
ACCCTCTCCAGCTGACATTCTCTTACAAACTTTAGCTGGCTGCTGCTGCAATTACG
GTCATATCTTGTAAGATTGGGAGCTTTTGAAGAGTAATAAGAAGGATCACAAACAGGACAGCTGGAGGAGGAG
AGGTCTACTGCAAAAAATTTCTAGGTTAAAAGAGTAGCATTATTTCCTCGTATTTTTTACACATGATTTTGGAAT
GCTGTAGGGTCGCCAGCTCGCAGCTCTTAAAGTAGGTTGCTCATGTGGTTCTCCAAAGTTTCTTCTTGTCAGAAATTGAGC
CACATCGAGTAGGTTGGGAAGTATGAGCAGTGAGTGAGGATGCTCCACATGTGTTGGAACGTGGACAGAATGCTTCA
ATAAAGCAGACTGAGGGAAGCCGCATCCTGCAAAGTAAGTTCTCTGGCCCCTGGGCGCTCCGCACTTAAAG
AATTGATGACCCTGGCCGCGCATATCCCTGCAGATGCATCCAGTACALegacy Kits

The kits listed in this section are no longer sold.

Nextera DNA Sample Prep Kit (Epicentre Biotechnologies)

(Obsolete)

As a replacement, use catalog # FC-121-1030 or catalog #FC-121-1031.

Transposon Sequences

5’ -GCCTCCCCCGCCATACGAGATGTGTTAAGAGACAG
5’ -GCCTTTGCAGCCCGCTCAGAGATGTGTTAAGAGACAG

Adapters (showing optional bar code)

5’ -AATGATACGGCGACCACCGAGATCTACACGCTCTCCCTCGCGCCATAC
5’ -CAAGCAGAAGACGGACATACTACAGAT [barcode] CGGTCTCTGCTGCACTACCCGCTCAGCTACAG-3’

PCR Primers

5’ -AATGATACGGCGACCACCGA
5’ -CAAGCAGAAGACGGCCATACGA

Oligonucleotide Sequences for Genomic DNA

(Obsolete)
Adapters
5’ P-GATCGGAAGAGCTCTGATGCGGTTCTCTGCTTG
5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

PCR Primers
5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
5’ CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT

Genomic DNA Sequencing Primer
5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Oligonucleotide Sequences for Paired End DNA
(Obsolete)
PE Adapters
5’ P-GATCGGAAGAGCGGTTCCACGAGAATTCGAG
5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE PCR Primer 1.0
5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE PCR Primer 2.0
5’ CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT

PE Read 1 Sequencing Primer
5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE Read 2 Sequencing Primer
5’ CGGTCTCGGCATCTGCTGCTGACCCGCTCTTCCGATCT

Oligonucleotide Sequences for the Multiplexing Sample Prep Oligo Only Kit
(Obsolete)
Multiplexing Adapters
5’ P-GATCGGAAGAGACACGTCT
5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT
Multiplexing PCR Primer 1.0
5’ AATGATACGGCGACCAGATCTACAGCTTCCCTACACGACGCTCTTCGATCT

Multiplexing PCR Primer 2.0
5’ GTGACTGGAGTTTGACGTGTGCTCTTCGATCT

Multiplexing Read 1 Sequencing Primer
5’ ACACTCTTTCCTACACGACGCTCTTCGATCT

Multiplexing Index Read Sequencing Primer
5’ GATCGGAAGAGACGTCTGAACTCCAGTCAC

Multiplexing Read 2 Sequencing Primer
5’ GTGACTGGAGTTTGACGTGTGCTCTTCGATCT

PCR Primer Index Sequences 1–12
PCR Primer, Index 1
5’ CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCT
PCR Primer, Index 2
5’ CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCT
PCR Primer, Index 3
5’ CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCT
PCR Primer, Index 4
5’ CAAGCAGAAGACGGCATACGAGATTTGGTCAGTGACTGGAGTTCT
PCR Primer, Index 5
5’ CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCT
PCR Primer, Index 6
5’ CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCT
PCR Primer, Index 7
5’ CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCT
PCR Primer, Index 8
5’ CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCT
PCR Primer, Index 9
5’ CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCT
PCR Primer, Index 10
5’ CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCT
PCR Primer, Index 11
5’ CAAGCAGAAGACGGCATACGAGGCTGATCGTGACTGGAGTTCT
PCR Primer, Index 12
5’ CAAGCAGAAGACGGCATACGAGAGATCTGATCGTGACTGGAGTTCT
PCR Primer, Index 11
\[5' \text{ CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTTC } \]

PCR Primer, Index 12
\[5' \text{ CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTTC } \]

Oligonucleotide Sequences for the v1 and v1.5 Small RNA Kits

(Obsolete)

RT Primer
\[5' \text{ CAAGCAGAAGACGGCATACGA } \]

5' RNA Adapter
\[5' \text{ GUUCAGAGUUCUACAGUCCGACGAUC } \]

3' RNA Adapter
\[5' \text{ P-UCGUAUGCCGUCUUCUGCUUGUidT } \]

v1.5 Small RNA 3' Adapter
\[5' /5rApp/ATCTCGTATGCCGTCTTCTGCTTG/3ddC/ \]

Small RNA PCR Primer 1
\[5' \text{ CAAGCAGAAGACGGCATACGA } \]

Small RNA PCR Primer 2
\[5' \text{ AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA } \]

Small RNA Sequencing Primer
\[5' \text{ CGACAGGTTTACAGTTCTACAGTCCGACGATC } \]
Revision History

<table>
<thead>
<tr>
<th>Document #</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000002694 v06</td>
<td>February 2018</td>
<td>Added TruSight Tumor 170 indexes.</td>
</tr>
<tr>
<td>1000000002694 v05</td>
<td>February 2018</td>
<td>Updated IDT for Illumina to include all 96 indexes.</td>
</tr>
<tr>
<td>1000000002694 v04</td>
<td>January 2018</td>
<td>Added AmpliSeq for Illumina Panels</td>
</tr>
<tr>
<td>1000000002694 v03</td>
<td>October 2017</td>
<td>Corrected the i5 bases for sample sheet insertion for the MiSeq and HiSeq sequencers concerning the Nextera DNA Flex kits. Updated section headers for TruSeq CD Indexes and reordered TruSeq sections.</td>
</tr>
<tr>
<td>1000000002694 v02</td>
<td>September 2017</td>
<td>Added adapters for Nextera DNA Flex kits.</td>
</tr>
<tr>
<td>1000000002694 v01</td>
<td>February 2016</td>
<td>Corrected i5 adapter names for TruSight One to E502–E505. Added adapters for TruSight RNA Pan-Cancer, TruSeq DNA Methylation, and TruSeq Ribonucleic Profile. Added MiniSeq where appropriate for reverse complement sequences. Added introduction, which explains when the reverse complement is required in the sample sheet.</td>
</tr>
</tbody>
</table>